본문 바로가기
통계프로그램 비교 시리즈/프로그래밍비교(Oracle,Python,R,SAS)

[데이터 출력] 데이터세트(테이블) 출력 - 2

by 기서무나구물 2021. 8. 3.

포스팅 목차

     

    2. Display the details of all employees.

     

    * 2. Emp 테이블을 출력하시오.


    • 데이터세트(테이블) 출력
    • Oracle : select 구문
    • 파이썬 Pandas : display 구문
    • R 프로그래밍 : print 구문
    • R Dplyr Package : print()
    • R sqldf Package : select 구문
    • Python pandasql Package : select 구문
    • R data.table Package : Data.table 변환 및 출력
    • SAS Proc SQL : Select 구문
    • SAS Data Step : Proc Print
    • Python Dfply Package : display 구문
    • 파이썬 Base 프로그래밍 :

     


    1. 오라클(Oracle)

     

    Oracle Programming
    select * 
    from   emp;

     


    2. 파이썬(Pandas)

     

    Python Programming
    display(emp)

     

    Results
      empno ename job mgr hiredate sal comm deptno Tot_salary annualsal
    0 7369 SMITH CLERK 7902.0 1980/12/17 800 NaN 20 NaN 9600.0
    1 7499 ALLEN SALESMAN 7698.0 1981/02/20 1600 300.0 30 480000.0 19500.0
    2 7521 WARD SALESMAN 7698.0 1981/02/22 1250 500.0 30 625000.0 15500.0
    3 7566 JONES MANAGER 7839.0 1981/04/02 2975 NaN 20 NaN 35700.0
    4 7654 MARTIN SALESMAN 7698.0 1981/09/28 1250 1400.0 30 1750000.0 16400.0
    5 7698 BLAKE MANAGER 7839.0 1981/03/01 2850 NaN 30 NaN 34200.0
    6 7782 CLARK MANAGER 7839.0 1981/01/09 2450 NaN 10 NaN 29400.0
    7 7788 SCOTT ANALYST 7566.0 1982/12/09 3000 NaN 20 NaN 36000.0
    8 7839 KING PRESIDENT NaN 1981/11/17 5000 NaN 10 NaN 60000.0
    9 7844 TURNER SALESMAN 7698.0 1981/09/08 1500 0.0 30 0.0 18000.0
    10 7876 ADAMS CLERK 7788.0 1983/01/12 1100 NaN 20 NaN 13200.0
    11 7900 JAMES CLERK 7698.0 1981/12/03 950 NaN 30 NaN 11400.0
    12 7902 FORD ANALYST 7566.0 1981/12/03 3000 NaN 20 NaN 36000.0
    13 7934 MILLER CLERK 7782.0 1982/01/23 1300 NaN 10 NaN 15600.0

     


    3. R Programming (R Package)

     

    R Programming
    %%R
    
    print(emp)

     

    Results
    # A tibble: 14 x 10
       empno ename job     mgr hiredate     sal  comm deptno Tot_salary
       <dbl> <chr> <chr> <dbl> <date>     <dbl> <dbl>  <dbl>      <dbl>
     1  7369 SMITH CLERK  7902 1980-12-17   800    NA     20         NA
     2  7499 ALLEN SALE~  7698 1981-02-20  1600   300     30     480000
     3  7521 WARD  SALE~  7698 1981-02-22  1250   500     30     625000
     4  7566 JONES MANA~  7839 1981-04-02  2975    NA     20         NA
     5  7654 MART~ SALE~  7698 1981-09-28  1250  1400     30    1750000
     6  7698 BLAKE MANA~  7839 1981-03-01  2850    NA     30         NA
     7  7782 CLARK MANA~  7839 1981-01-09  2450    NA     10         NA
     8  7788 SCOTT ANAL~  7566 1982-12-09  3000    NA     20         NA
     9  7839 KING  PRES~    NA 1981-11-17  5000    NA     10         NA
    10  7844 TURN~ SALE~  7698 1981-09-08  1500     0     30          0
    11  7876 ADAMS CLERK  7788 1983-01-12  1100    NA     20         NA
    12  7900 JAMES CLERK  7698 1981-12-03   950    NA     30         NA
    13  7902 FORD  ANAL~  7566 1981-12-03  3000    NA     20         NA
    14  7934 MILL~ CLERK  7782 1982-01-23  1300    NA     10         NA
    # ... with 1 more variable: annualsal$sal <dbl>

     


    4. R Dplyr Package

     

    R Programming
    %%R
    
    emp %>% print()

     

    Results
    # A tibble: 14 x 8
       empno ename  job         mgr hiredate     sal  comm deptno
       <dbl> <chr>  <chr>     <dbl> <date>     <dbl> <dbl>  <dbl>
     1  7369 SMITH  CLERK      7902 1980-12-17   800    NA     20
     2  7499 ALLEN  SALESMAN   7698 1981-02-20  1600   300     30
     3  7521 WARD   SALESMAN   7698 1981-02-22  1250   500     30
     4  7566 JONES  MANAGER    7839 1981-04-02  2975    NA     20
     5  7654 MARTIN SALESMAN   7698 1981-09-28  1250  1400     30
     6  7698 BLAKE  MANAGER    7839 1981-03-01  2850    NA     30
     7  7782 CLARK  MANAGER    7839 1981-01-09  2450    NA     10
     8  7788 SCOTT  ANALYST    7566 1982-12-09  3000    NA     20
     9  7839 KING   PRESIDENT    NA 1981-11-17  5000    NA     10
    10  7844 TURNER SALESMAN   7698 1981-09-08  1500     0     30
    11  7876 ADAMS  CLERK      7788 1983-01-12  1100    NA     20
    12  7900 JAMES  CLERK      7698 1981-12-03   950    NA     30
    13  7902 FORD   ANALYST    7566 1981-12-03  3000    NA     20
    14  7934 MILLER CLERK      7782 1982-01-23  1300    NA     10

     


    5. R sqldf Package

     

    R Programming
    %%R
    
    require(sqldf)
    sqldf("select * from emp")

     

    Results
       empno  ename       job  mgr   hiredate  sal comm deptno
    1   7369  SMITH     CLERK 7902 1980-12-17  800   NA     20
    2   7499  ALLEN  SALESMAN 7698 1981-02-20 1600  300     30
    3   7521   WARD  SALESMAN 7698 1981-02-22 1250  500     30
    4   7566  JONES   MANAGER 7839 1981-04-02 2975   NA     20
    5   7654 MARTIN  SALESMAN 7698 1981-09-28 1250 1400     30
    6   7698  BLAKE   MANAGER 7839 1981-03-01 2850   NA     30
    7   7782  CLARK   MANAGER 7839 1981-01-09 2450   NA     10
    8   7788  SCOTT   ANALYST 7566 1982-12-09 3000   NA     20
    9   7839   KING PRESIDENT   NA 1981-11-17 5000   NA     10
    10  7844 TURNER  SALESMAN 7698 1981-09-08 1500    0     30
    11  7876  ADAMS     CLERK 7788 1983-01-12 1100   NA     20
    12  7900  JAMES     CLERK 7698 1981-12-03  950   NA     30
    13  7902   FORD   ANALYST 7566 1981-12-03 3000   NA     20
    14  7934 MILLER     CLERK 7782 1982-01-23 1300   NA     10

     


    6. Python pandasql Package

     

    Python Programming
    import pandasql as ps
    
    ps.sqldf("select * from emp")

     

    Results
      empno ename job mgr hiredate sal comm deptno
    0 7369 SMITH CLERK 7902.0 1980/12/17 800 NaN 20
    1 7499 ALLEN SALESMAN 7698.0 1981/02/20 1600 300.0 30
    2 7521 WARD SALESMAN 7698.0 1981/02/22 1250 500.0 30
    3 7566 JONES MANAGER 7839.0 1981/04/02 2975 NaN 20
    4 7654 MARTIN SALESMAN 7698.0 1981/09/28 1250 1400.0 30
    5 7698 BLAKE MANAGER 7839.0 1981/03/01 2850 NaN 30
    6 7782 CLARK MANAGER 7839.0 1981/01/09 2450 NaN 10
    7 7788 SCOTT ANALYST 7566.0 1982/12/09 3000 NaN 20
    8 7839 KING PRESIDENT NaN 1981/11/17 5000 NaN 10
    9 7844 TURNER SALESMAN 7698.0 1981/09/08 1500 0.0 30
    10 7876 ADAMS CLERK 7788.0 1983/01/12 1100 NaN 20
    11 7900 JAMES CLERK 7698.0 1981/12/03 950 NaN 30
    12 7902 FORD ANALYST 7566.0 1981/12/03 3000 NaN 20
    13 7934 MILLER CLERK 7782.0 1982/01/23 1300 NaN 10

     


    7. R data.table Package

     

    R Programming
    %%R
    
    DT          <- data.table(emp)
    dept_DT     <- data.table(dept)
    
    DT

     

    Results
        empno  ename       job  mgr   hiredate  sal comm deptno
     1:  7369  SMITH     CLERK 7902 1980-12-17  800   NA     20
     2:  7499  ALLEN  SALESMAN 7698 1981-02-20 1600  300     30
     3:  7521   WARD  SALESMAN 7698 1981-02-22 1250  500     30
     4:  7566  JONES   MANAGER 7839 1981-04-02 2975   NA     20
     5:  7654 MARTIN  SALESMAN 7698 1981-09-28 1250 1400     30
     6:  7698  BLAKE   MANAGER 7839 1981-03-01 2850   NA     30
     7:  7782  CLARK   MANAGER 7839 1981-01-09 2450   NA     10
     8:  7788  SCOTT   ANALYST 7566 1982-12-09 3000   NA     20
     9:  7839   KING PRESIDENT   NA 1981-11-17 5000   NA     10
    10:  7844 TURNER  SALESMAN 7698 1981-09-08 1500    0     30
    11:  7876  ADAMS     CLERK 7788 1983-01-12 1100   NA     20
    12:  7900  JAMES     CLERK 7698 1981-12-03  950   NA     30
    13:  7902   FORD   ANALYST 7566 1981-12-03 3000   NA     20
    14:  7934 MILLER     CLERK 7782 1982-01-23 1300   NA     10

     


    8. SAS Proc SQL

     

    SAS Programming
    %%SAS sas
    
    proc sql inobs=5;
      select *
      from   emp;
    quit;
    

     

    Results
    empno ename job mgr hiredate sal comm deptno
    7369 SMITH CLERK 7902 1980-12-17 800 . 20
    7499 ALLEN SALESMAN 7698 1981-02-20 1600 300 30
    7521 WARD SALESMAN 7698 1981-02-22 1250 500 30
    7566 JONES MANAGER 7839 1981-04-02 2975 . 20
    7654 MARTIN SALESMAN 7698 1981-09-28 1250 1400 30

     


    9. SAS Data Step

     

    SAS Programming
    %%SAS sas
    
    proc print data=emp;
    run;

     

    Results
    OBS empno ename job mgr hiredate sal comm deptno
    1 7369 SMITH CLERK 7902 1980-12-17 800 . 20
    2 7499 ALLEN SALESMAN 7698 1981-02-20 1600 300 30
    3 7521 WARD SALESMAN 7698 1981-02-22 1250 500 30
    4 7566 JONES MANAGER 7839 1981-04-02 2975 . 20
    5 7654 MARTIN SALESMAN 7698 1981-09-28 1250 1400 30
    6 7698 BLAKE MANAGER 7839 1981-03-01 2850 . 30
    7 7782 CLARK MANAGER 7839 1981-01-09 2450 . 10
    8 7788 SCOTT ANALYST 7566 1982-12-09 3000 . 20
    9 7839 KING PRESIDEN . 1981-11-17 5000 . 10
    10 7844 TURNER SALESMAN 7698 1981-09-08 1500 0 30
    11 7876 ADAMS CLERK 7788 1983-01-12 1100 . 20
    12 7900 JAMES CLERK 7698 1981-12-03 950 . 30
    13 7902 FORD ANALYST 7566 1981-12-03 3000 . 20
    14 7934 MILLER CLERK 7782 1982-01-23 1300 . 10

     


    10. Python Dfply Package

     

    Python Programming
    display(emp >> head(5))

     

    Results
      empno ename job mgr hiredate sal comm deptno
    0 7369 SMITH CLERK 7902.0 1980/12/17 800 NaN 20
    1 7499 ALLEN SALESMAN 7698.0 1981/02/20 1600 300.0 30
    2 7521 WARD SALESMAN 7698.0 1981/02/22 1250 500.0 30
    3 7566 JONES MANAGER 7839.0 1981/04/02 2975 NaN 20
    4 7654 MARTIN SALESMAN 7698.0 1981/09/28 1250 1400.0 30

     


     

    [SQL, Pandas, R Prog, Dplyr, SQLDF, PANDASQL, DATA.TABLE]   SQL EMP 예제로 만나는 테이블 데이터 처리 방법 리스트

    반응형

    댓글